UT699 LEON 3FT from Aeroflex Colorado Springs

- Designed for operation in harsh environments
- Fault Tolerant architecture
- Guaranteed radiation performance
- Real-time operating system support

LEON 3FT V8 SPARC™
Microprocessor
Definitions

LEON µprocessor

LEON is a 32-bit CPU microprocessor core, based on the SPARC™ V8 RISC architecture and instruction set. The core is highly configurable, and suitable particularly for system-on-chip (SoC) designs. LEON 3FT is a Fault-Tolerant (FT) version, designed for operation in harsh, radiation-prone environments, and includes functionality to detect and correct single bit upset errors in all on-chip RAM memories.

Definitions

SPARC™ architecture

SPARC (Scalable Processor Architecture) is a RISC (Reduced Instruction Set Computing) architecture developed by Sun Microsystems. SPARC is a registered trademark of SPARC International, Inc., an organization established to create a larger ecosystem for the design by promoting, licensing, and providing conformance testing. As a result, the SPARC architecture is fully open and non-proprietary.

We offer development tools and real-time operating system support...

An advantage to working with Aeroflex’s UT699 is the extensive library of development tools. Since the UT699 is SPARC™ V8 compliant, compilers and kernels for SPARC V8 are based on industry standard development tools.

Aeroflex offers a full software development suite including a C/C++ cross-compiler system based on GCC and the Newlib embedded C-library. The BCC compiler system allows cross-compilation of C and C++ applications for the LEON 3FT family.

For multi-threaded applications, SPARC-compliant ports are available for the following operating systems: eCos, RTEMS, Linux, VxWorks, Nucleus, ThreadX and LynxOS.

To support the software development process, a simulator and a debugger are available. TSIM is a high-performance SPARC-architecture instruction simulator capable of emulating the UT699 LEON 3FT. GROMON is a debug monitor for the UT699 processor. It communicates with the UT699 debug support unit (DSU) and allows non-intrusive debugging of the complete target system.

...plus proven IP

The Aeroflex Gaisler GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SoC) development. The IP cores are centered around the common on-chip bus and use a coherent method for simulation and synthesis. The library is vendor independent, with support for different CAD tools and target technologies. A unique plug-and-play method is used to configure and connect the IP cores without the need to modify any global resources.
Aeroflex offers the best software support.

UT699 Software Development Tools (Debug)

GRMON
- **CODE MANAGEMENT**
 - Trace buffer, breakpoint, watch point, memory, peripheral registers
 - GNU debugger (GDB) support
 - Built-in disassembler
 - Error injection
- **INTERFACES**
 - In-system flash programming interface
 - Flexible debug interfaces: UART, JTAG, cPCI, SpaceWire

PLATFORM
- Eclipse IDE support
- OS: Linux/Windows

GENERAL
- Custom module support
- Supports future LEON roadmap

I/O
- Supports UT699: GPIO, timers, SpW (IEMP, common), CAN, UART, cPCI
- Loadable user-defined I/O device

DEBugging
- Instruction/stack trace buffer
- Non-intrusive execution time profiling
- Check-pointing capability
- Code coverage monitoring
- GNU debugger (GDB) support

OPERATIONS
- 64-bit time simulation
- EDAC and MMLU emulation
- Simulation performance >45 MIPS

SYSTEM HARDWARE
- RASTA
- ALEXIS
- Custom

HARDWARE
- GR-CPCI-UT699
 - 6U cPCI
 - SRAM/SDRAM
 - Flash PROM
 - Line transceivers

Target hardware/UT699 evaluation board
- UART or JTAG connection
- PC running GRMON on Windows or Linux

UT699 Operating Systems Options (RTOS)

<table>
<thead>
<tr>
<th>REAL-TIME OPERATING SYSTEMS</th>
<th>SUPPLIED DRIVERS</th>
<th>PLATFORM</th>
<th>FOOTPRINT</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SpW</td>
<td>UART</td>
<td>Ethernet</td>
<td>CAN</td>
</tr>
<tr>
<td>RTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LynxOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThreadX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VxWorks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snapgear Linux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEON IDE featuring

- Eclipse-based C/C++ integrated development environment
- Code entry, build system, and debugging provided
- Support for debugging on real hardware through GRMON or on a simulator through TSIM
- Support for different toolchains, templates for RTEMS/RCC, BCC, Nucleus, ThreadX, and eCos
- Source-level debugging and disassembly view
- Variables, memory, and register view
- Support for Linux and Windows host platforms

LEON Integrated Development Environment (IDE)

- Code entry
- Build System
- Debugger
- Toolchain support
- BCC
- RTEMS/RCC
- eCos
- Nucleus
- ThreadX
- Mkprom2
- PROM image

BCC = Bare-C Cross Compiler
RCC = RTEMS Cross Compiler
GDB = GNU debugger
Mkprom2 = Make prom utility
UT699 FEATURES

- Implemented on a 0.25µm CMOS technology
- Flexible static design allows up to 66MHz clock rate
- 89DMIPS throughput via 66MHz base clock frequency
- On-board programmable timers, interrupt controllers
- High-performance dual-precision IEEE-754 FPU
- Power-saving 2.5V core power supply; 3.3V I/O
- Hardened-by-design flip-flops and memory cells

UT699 CORES

AMBA bus interconnects a peripheral rich environment:

- 10/100 Base-T Ethernet port
- Integrated PCI 2.2 compatible core
- Four integrated multi-protocol SpaceWire nodes with two supporting the RMAP target protocol in hardware
- Two CAN 2.0 compliant bus interfaces
- Multifunctional memory controller with EDAC

UT699 GUARANTEED RADIATION PERFORMANCE / OPERATIONAL ENVIRONMENT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Ionizing Dose (TID)</td>
<td>3E5</td>
<td>rads(Si)</td>
</tr>
<tr>
<td>Single Event Latchup (SEL)</td>
<td>>108</td>
<td>MeV-cm²/mg</td>
</tr>
<tr>
<td>Neutron Fluence</td>
<td>1.0E14</td>
<td>n/cm²</td>
</tr>
</tbody>
</table>

UT699 BLOCK DIAGRAM

UT699 LEON 3FT

- IEEE754 FPU
- MUL/DIV
- MMU

AHB interface

2X4K D-cache
2X4K I-cache

Debug support unit

4x SpaceWire

Serial/JTAG debug link

PCI bridge

Ethernet MAC

AHB AHB

AHB/APB bridge

Memory controller

AHB arbiter

8/32-bit memory bus

512MB non-volatile
512MB I/O
Up to 1GB SRAM
Up to 1GB SDRAM

LIART
Timers
IqqCtrl
I/O port

NOTIONAL SINGLE BOARD COMPUTER

UT699 LEON 3FT

RS-422

8MB EDAC SRAM

4MB EDAC non-volatile memory

Dedicated SpW Links

Ethernet PHY

Port 1
Port 2
Port 3
Port 4
LEON UT699 3FT SPARC™ V8
MICROPROCESSOR EVALUATION BOARD

The GR-CPCI-UT699 development board is capable of running at a system clock speed of 66MHz. The board is a 6U cPCI form factor and can also be used in a standalone bench-top configuration. The board supports 32-bit/33MHz PCI, 10/100 Base-T Ethernet, four SpaceWire ports capable of running up to 200Mbits/s, two CAN ports, on-board FLASH, SRAM, and SDRAM. A socket for a PROM device and a USB debug port are also on-board.

ALExIS

ALExIS (Aeroflex LEON Experimenter’s Interface System) is a ready-to-run development platform for customer applications with flexible architecture supporting quick path-to-flight after development. Flight and non-flight versions of the UT699-based single board computer of the ALExIS are available. The ALExIS platform provides two cPCI slots for future card expansion, and pre-loaded operating systems and applications drivers.

RASTA

The Aeroflex Gaisler implementation of the RASTA (Reference Avionics System Testbed Activity) aims to provide a standardized hardware and software infrastructure for development, prototyping and validation of on-board systems. It allows quick and easy integration of complete systems in a lab environment, using standardized interfaces and connectors. It also provides access to LEON3 technology (through FPGA, ASIC, or products like UT699).