SpaceWire Family

What is SpaceWire?
The SpaceWire standard is a self-managing serial protocol that provides a high speed, low power serial interface while offering a flexible simple user interface. The protocol is derived from IEEE 1355-1995. The benefits are straightforward, a simple protocol, a simple user interface (FIFO) with high data rate and lower power using LVDS as the physical layer. Aeroflex Colorado Springs saw the benefits of the SpaceWire Standard used in numerous European programs and announced the development of their SpaceWire Family in 2005 with the UT200SpWPHY Transceiver and have added a Protocol Handler for their RadHard Eclipse FPGA. A SpaceWire 4-port Router is planned for 4Q08.

Point-to-Point Communication

Redundant Point-to-Point

Router Implementation
UT100SpW02 SpaceWire Protocol Handler IP for RadHard Eclipse FPGA

- Designed for use with the RadHard Eclipse FPGA (view datasheet at www.aeroflex.com/RadHardFPGA)
- Dual ECSS-E-50-12A compliant links
- Data rates from 2 to 100 Mbits/sec
- 9 bit transmit and receive FIFO user interface

UT100SpWPHY Transceiver

- 2-bit Serializer/Deserializer (SerDes) functionality
- LVDS physical layer
- Data rates to 200 Mbits/sec
- Data/Strobe transmit skew <500pS
- 3.3V power supply
- Cold spare all LVDS pins

UT200SpWPHY01 SpaceWire PHY Chip Block Diagram
UT200SpW4RTR 4-Port SpaceWire Router

- 4-port SpaceWire router with a system interface port for a total of 5 ports
- Data rates up to 200Mbps on all 4 SpaceWire ports
- 2.5V core power supply, 3.3V I/O power supply
- Compliant to the SpaceWire Standard, Document Number ECSS-E-50-12A (http://www.ecss.nl/)
- Group adaptive routing for 2 ports when using logical addressing
- Host (FIFO) clock frequency: 50MHz
- 9 by 128 receive and transmit FIFOs on each port
SpaceWire Design Examples

The distributed or partially connected SpaceWire network is one where the nodes are connected to one or more of the other nodes in the network. A point-to-point link between the nodes allows for some redundancy.
The centralized SpaceWire network has a router at the center of the network that acts as the arbitrator of messages. This topology reduces the chance of network failure by connecting all of the system to a central node. All peripheral SpaceWire nodes must communicate with all other nodes by transmitting to and receiving from the central node (router).
SpaceWire Node Design Example

UT7R995 RadClock

Output Freq. Range: 6Mhz to 200Mhz
Berk output to output skew <100ps
Phase adjustable

UT6325 Rad-Hard
Eclipse FPGA

UT100SpWG2
Logic
Protocol
Handler
IP

User
Available
Logic

65% fabric available for backend interface
22 of 24 Rad-Hard SRAM blocks available
Data Rates up to 100Mb/s

Processor, FPGA, or Memory

UT200SpWPHY
Physical Layer
Transceiver

UT200SpWPHY
Physical Layer
Transceiver

3.3V LVDS I/O w/ Cold Sparring
Data rates up to 200Mb/s
Data/Strobe transmit skew <500ps

SpaceWire
Node

To Redundant Node or Router

TXA/RxA

TXB/RxB

TX Clock-TX/2 Clock

TX Clock-TX/2 Clock
Internet Resources:
Visit www.aeroflex.com/SpaceWire to download:
 SpaceWire Data Sheets
 IBIS Models

Visit www.aeroflex.com/RadHard to see the latest
Aeroflex Colorado Springs’ RadHard products for space applications!

Aeroflex Colorado Springs, Inc., reserves the right to make
changes to any products and services herein at any time
without notice. Consult Aeroflex or an authorized sales
representative to verify that the information in this data sheet
is current before using this product. Aeroflex does not assume
any responsibility or liability arising out of the application or
use of any product or service described herein, except as
expressly agreed to in writing by Aeroflex; nor does the
purchase, lease, or use of a product or service from Aeroflex
convey a license under any patent rights, copyrights,
trademark rights, or any other of the intellectual rights of
Aeroflex or of third parties.