ACT5028 Resolver-To-Digital Converter (RDC) Evaluation Board
Scope:

This application note is to aid in the support of testing and evaluation of the ACT5028 Resolver to Digital (RDC) Converter on the ACT5028 Evaluation board developed by Aeroflex.

The Resolver inputs can be from an actual Resolver or a simulator as noted in Support Equipment below.

Support Documentation:

a) ACT5028 Product Data Sheet
b) 5028-411 Schematic of Evaluation Board
c) 5028-480 Evaluation Board Assembly
d) SW5028-2 Software Program to determine RDC bandwidth component values

Support Equipment Required:

a) +5 Volt Power Supply capable of .25amps
b) +5 to +3 Volt Power Supply if required for VL/I/O
c) Sine Wave Generator capable of 20 KHz @ 3 Volts RMS
d) North Atlantic Industry Synchro / Resolver Simulator Model 5330 or equivalent
e) Digital Multi Meter (Measure voltage, current, resistance, & capacitance)
f) Digital Oscilloscope

Connector Inputs:

J1	Used for Auto Test (Resolver Signals)
J2	Used for Auto Test (Control Signals)
J3	Used for Auto Test (Data Bus)
K1	Used for Auto Test (Power Relay)
+SIN	+SIN input signal from Resolver
-SIN	-SIN input signal from Resolver
+COS	+COS input signal from Resolver
-COS	-COS input signal from Resolver
+REF	+REF input signal from sine wave generator
-REF	-REF input signal from sine wave generator
+5V	System Power Supply
VL/I/O	Alternate Digital Interface Power (5-3.3Volts)
GND	System Ground

Controls:

S1 Power on switch (ON/OFF) for +5 V & VL/I/O inputs
S2 DATALOAD; Loads the contents of the Data Bus into the RDC Converter
 *Logic 0 No Load *Logic 1 Load Data
 *Note: Rev B Silicon has a reverse polarity
S3 VL/I/O; Digital Logic Interface voltage
 Logic 0 selects +5 Volts
 Logic 1 selects VL/I/O input
S4 SC1; Mode Select SC1/S4 SC2/S5
 0 0 10 Bit Mode
 0 1 12 Bit Mode
 1 0 14 Bit Mode
 1 1 16 Bit Mode
S6 INH;
 Logic 0 Inhibits Data Bus from changing
 Logic 1 Enables Data Bus changes
S7 ENABLE;
 Logic 0 Enables Data Bus as an Output Port
 Logic 1 Disables Data Bus output, HiZ State
S8 LED POWER (ON/OFF)
S9-24 Data Bus; Note care should be taken when driving the Data Bus, ENABLE should be at Logic 1.
 Logic 0 selects a low logic level
 Logic 1 selects a Hi logic level
 Center position provides a HiZ state from the switch
LEDs:

Power On LED indicates that +5 Volts is turned on by S1.
Bit1-Bit16 Indicates the status of the corresponding Data bit on the Bus.

Electronic Components TBD:

 Resolver Characteristics
 R7-R10 Resistor Values TBD, 1/8w, 1%
 R27 Resistor Values TBD, 1/8w, 1%
 C5-C8 Ceramic Capacitor TBD, 25 Volt, 5%

 Input Conditioning
 R1-R4 Resistor Values TBD, 1/8w, 1%
 R13-R20 Resistor Values TBD, 1/8w, 1%
 C9-C10 Ceramic Capacitor TBD, 25 Volt, 5%

Evaluation Board Setup:

Determine System Characteristics:

All of the loop components (resistors & capacitors) are calculated for you in a convenient program, simply input the following information in the program. The reference designations in the program do not match the Evaluation Board, they reference the ACT5028 Product Data Sheet.

<table>
<thead>
<tr>
<th>ACT5028 Evaluation Bd</th>
<th>Product Data Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10 same as R3</td>
<td>R3</td>
</tr>
<tr>
<td>R8 = R27 same as R1</td>
<td>R1</td>
</tr>
<tr>
<td>R7 = R9 same as R2</td>
<td>R2</td>
</tr>
<tr>
<td>C6 = C8 same as C2</td>
<td>C2</td>
</tr>
<tr>
<td>C5 = C7 same as C3</td>
<td>C3</td>
</tr>
</tbody>
</table>

Program Inputs:

a) Resolution
b) Maximum Tracking Rate
c) Closed Loop Bandwidth BW_{CL}
d) Carrier Frequency
e) SIN & COS input levels

Resolution
(Also configure SC1 & SC2 Switches on PCB)
Select 10 for .35° (10 Bit Mode)
Select 12 for .09° (12 Bit Mode)
Select 14 for .022° (14 Bit Mode)
Select 16 for .0055° (16 Bit Mode)

Maximum Tracking Rate
0 to 1024 RPS for 10 Bit Mode
0 to 256 RPS for 12 Bit Mode
0 to 64 RPS for 14 Bit Mode
0 to 16 RPS for 16 Bit Mode

Closed Loop Bandwidth
Typically > 10x Maximum Tracking Rate

Carrier Frequency
(Supplied by user)
Range 45 to 30KHZ
Must be > 4 x BW_{CL} in 10 Bit Mode
Must be > 8 x BW_{CL} in 12 Bit Mode
Must be > 12 x BW_{CL} in 14 Bit Mode
Must be > 16 x BW_{CL} in 16 Bit Mode

SIN & COS Input
(Supplied by user)
1 to 1.5 Vrms
Input Signal Conditioning:
The first decision is to select Single Ended or Differential input conditioning. Figure 1 shows the circuit components that must be selected. To maintain the best accuracy resistor tolerance and matching will be important. The input amplitude is not as important (staying within recommended input range) as maintaining matched amplitudes on the SIN and COS and when using differential inputs, symmetry should be maintained. Note the resistor reference designations in Figure 1 are grouped by A, B, C and D. Each group will have the same value and should be matched as close as possible. If no attenuation is required in the SIN / COS inputs, resistor group A is replaced with zero ohm jumper wires. If no attenuation is required for the Reference input, resistor group C would be replaced with zero ohm jumper wires.

Reference Input Conditioning:
Most Resolvers have a LEADING input to output phase shift. A simple C-R leading phase shift network from the Resolver reference to the RDC’s reference input will provide the compensating phase shift required to bring the signals in phase. If the Resolver has a LAGGING input to output phase shift an R-C lagging phase shift network (low pass network) would be required. The resistor group D would need a capacitor in parallel and if no attenuation is required the resistor can be omitted.

The Reference Phase Lead can be calculated by the following formula;

\[\text{Phase angle} = \text{ArcTan} \left(\frac{1}{6.28 \times (RC + RD) \times C} \right) \]

\(F_{REF} \) is the reference frequency for the Reference signal being applied to the RDC Reference input.

When selecting component it would be easiest to select the capacitor values C9 and C10 (Ceramic Capacitors) that should be matched as close as possible. After first selecting the capacitor use the following formula to select the resistors.

\[RC + RD = \frac{1}{(\text{Tan (Phase Angle)) \times F_{REF} \times 6.28 \times C}} \]

Note the C-R phase lead circuit on the input to the Demodulator (pins 15 & 16) should be considered when calculating the total system phase compensation. This phase lead adds to the phase lead developed by the Resolver.
Differential Input Configuration

Single-Ended Input Configuration

Figure 1 – Input Signal Conditioning